作者:周志湖
以下的代码演示了通过Case Class进行表Schema定义的样例:
// sc is an existing SparkContext.val sqlContext = new org.apache.spark.sql.SQLContext(sc)// this is used to implicitly convert an RDD to a DataFrame.import sqlContext.implicits._// Define the schema using a case class.// Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,// you can use custom classes that implement the Product interface.case class Person(name: String, age: Int)// Create an RDD of Person objects and register it as a table.val people = sc.textFile("examples/src/main/resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF()people.registerTempTable("people")// SQL statements can be run by using the sql methods provided by sqlContext.val teenagers = sqlContext.sql("SELECT name, age FROM people WHERE age >= 13 AND age <= 19")// The results of SQL queries are DataFrames and support all the normal RDD operations.// The columns of a row in the result can be accessed by field index:teenagers.map(t => "Name: " + t(0)).collect().foreach(println)// or by field name:teenagers.map(t => "Name: " + t.getAs[String]("name")).collect().foreach(println)// row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]teenagers.map(_.getValuesMap[Any](List("name", "age"))).collect().foreach(println)// Map("name" -> "Justin", "age" -> 19)
(1)sql方法返回DataFrame
def sql(sqlText: String): DataFrame = { DataFrame(this, parseSql(sqlText)) }
当中parseSql(sqlText)方法生成对应的LogicalPlan得到,该方法源代码例如以下:
//依据传入的sql语句,生成LogicalPlanprotected[sql] def parseSql(sql: String): LogicalPlan = ddlParser.parse(sql, false)
ddlParser对象定义例如以下:
protected[sql] val sqlParser = new SparkSQLParser(getSQLDialect().parse(_))protected[sql] val ddlParser = new DDLParser(sqlParser.parse(_))
(2)然后调用DataFrame的apply方法
private[sql] object DataFrame { def apply(sqlContext: SQLContext, logicalPlan: LogicalPlan): DataFrame = { new DataFrame(sqlContext, logicalPlan) }}
能够看到,apply方法參数有两个,各自是SQLContext和LogicalPlan,调用的是DataFrame的构造方法,详细源代码例如以下:
//DataFrame构造方法。该构造方法会自己主动对LogicalPlan进行分析,然后返回QueryExecution对象def this(sqlContext: SQLContext, logicalPlan: LogicalPlan) = { this(sqlContext, { val qe = sqlContext.executePlan(logicalPlan) //推断是否已经创建。假设是则抛异常 if (sqlContext.conf.dataFrameEagerAnalysis) { qe.assertAnalyzed() // This should force analysis and throw errors if there are any } qe }) }
(3)val qe = sqlContext.executePlan(logicalPlan) 返回QueryExecution, sqlContext.executePlan方法源代码例如以下:
protected[sql] def executePlan(plan: LogicalPlan) = new sparkexecution.QueryExecution(this, plan)
QueryExecution类中表达了Spark运行SQL的主要工作流程,详细例如以下
class QueryExecution(val sqlContext: SQLContext, val logical: LogicalPlan) { @VisibleForTesting def assertAnalyzed(): Unit = sqlContext.analyzer.checkAnalysis(analyzed) lazy val analyzed: LogicalPlan = sqlContext.analyzer.execute(logical) lazy val withCachedData: LogicalPlan = { assertAnalyzed() sqlContext.cacheManager.useCachedData(analyzed) } lazy val optimizedPlan: LogicalPlan = sqlContext.optimizer.execute(withCachedData) // TODO: Don't just pick the first one... lazy val sparkPlan: SparkPlan = { SparkPlan.currentContext.set(sqlContext) sqlContext.planner.plan(optimizedPlan).next() } // executedPlan should not be used to initialize any SparkPlan. It should be // only used for execution. lazy val executedPlan: SparkPlan = sqlContext.prepareForExecution.execute(sparkPlan) /** Internal version of the RDD. Avoids copies and has no schema */ //调用toRDD方法运行任务将结果转换为RDD lazy val toRdd: RDD[InternalRow] = executedPlan.execute() protected def stringOrError[A](f: => A): String = try f.toString catch { case e: Throwable => e.toString } def simpleString: String = { s"""== Physical Plan == |${stringOrError(executedPlan)} """.stripMargin.trim } override def toString: String = { def output = analyzed.output.map(o => s"${o.name}: ${o.dataType.simpleString}").mkString(", ") s"""== Parsed Logical Plan == |${stringOrError(logical)} |== Analyzed Logical Plan == |${stringOrError(output)} |${stringOrError(analyzed)} |== Optimized Logical Plan == |${stringOrError(optimizedPlan)} |== Physical Plan == |${stringOrError(executedPlan)} |Code Generation: ${stringOrError(executedPlan.codegenEnabled)} """.stripMargin.trim }}
能够看到,SQL的运行流程为
1.Parsed Logical Plan:LogicalPlan 2.Analyzed Logical Plan:lazy val analyzed: LogicalPlan = sqlContext.analyzer.execute(logical)
3.Optimized Logical Plan:lazy val optimizedPlan: LogicalPlan = sqlContext.optimizer.execute(withCachedData)
4. Physical Plan:lazy val executedPlan: SparkPlan = sqlContext.prepareForExecution.execute(sparkPlan)
能够调用results.queryExecution方法查看,代码例如以下:
scala> results.queryExecutionres1: org.apache.spark.sql.SQLContext#QueryExecution === Parsed Logical Plan =='Project [unresolvedalias('name)] 'UnresolvedRelation [people], None== Analyzed Logical Plan ==name: stringProject [name#0] Subquery people LogicalRDD [name#0,age#1], MapPartitionsRDD[4] at createDataFrame at:47== Optimized Logical Plan ==Project [name#0] LogicalRDD [name#0,age#1], MapPartitionsRDD[4] at createDataFrame at :47== Physical Plan ==TungstenProject [name#0] Scan PhysicalRDD[name#0,age#1]Code Generation: true
(4) 然后调用DataFrame的主构造器完毕DataFrame的构造
class DataFrame private[sql]( @transient val sqlContext: SQLContext, @DeveloperApi @transient val queryExecution: QueryExecution) extends Serializable
(5)
当调用DataFrame的collect等方法时,便会触发运行executedPlandef collect(): Array[Row] = withNewExecutionId { queryExecution.executedPlan.executeCollect() }
比如:
scala> results.collectres6: Array[org.apache.spark.sql.Row] = Array([Michael], [Andy], [Justin])
总体流程图例如以下: